

UL 746B

UL 746B

UL 746B

UL 94

UL 94

IEC 60695-11-10

IEC 60695-11-10

IEC 60695-11-10

IEC 60695-11-10

IEC 60695-2-12

Zytel® ST801 BK010

NYLON RESIN

Product information

RTI, strength, 0.75mm

RTI, strength, 1.5mm

RTI, strength, 3.0mm

Burning Behav. at 1.5mm nom. thickn.

Glow Wire Flammability Index, 0.75mm

Burning Behav. at thickness h

Flammability

Thickness tested

Thickness tested

UL recognition

UL recognition

Zytel® ST801 BK010 is an Unreinforced, Super Toughened, Polyamide 66

Resin Identification Part Marking Code ISO designation	PA66-HI >PA66-HI< ISO 16396-PA66-I,,M1CG1L1R,S14-020		ISO 1043 ISO 11469
•	100 10000 1710	5 1,,m15 G12111,611 525	
Rheological properties	dry/cond.		
Moulding shrinkage, parallel	1.8/-	%	ISO 294-4, 2577
Moulding shrinkage, normal	1.4/-	%	ISO 294-4, 2577
Typical mechanical properties	dry/cond.		
Tensile modulus	2000/-	MPa	ISO 527-1/-2
Tensile stress at yield, 50mm/min	51/-	MPa	ISO 527-1/-2
Tensile strain at yield, 50mm/min	5.5/-	%	ISO 527-1/-2
Nominal strain at break	31/-	%	ISO 527-1/-2
Flexural modulus	1900/800	MPa	ISO 178
Charpy impact strength, 23°C	270/N	kJ/m²	ISO 179/1eU
Charpy impact strength, -30°C	350/-	kJ/m²	ISO 179/1eU
Charpy notched impact strength, 23°C	80/-	kJ/m²	ISO 179/1eA
Charpy notched impact strength, -30°C	17/-	kJ/m²	ISO 179/1eA
Poisson's ratio	0.4/-		
Tear strength, parallel	270/210	kN/m	ISO 34-1
Tear strength, normal	260/200	kN/m	ISO 34-1
Thermal properties	dry/cond.		
Glass transition temperature, 10°C/min	75/20	°C	ISO 11357-1/-3
RTI, electrical, 0.75mm	125	°C	UL 746B
RTI, electrical, 1.5mm	125	°C	UL 746B
RTI, electrical, 3.0mm	125	°C	UL 746B
RTI, impact, 0.75mm	75	°C	UL 746B
RTI, impact, 1.5mm	75	°C	UL 746B
RTI, impact, 3.0mm	75	°C	UL 746B

Printed: 2025-05-29 Page: 1 of 3

85

85/*

85

HB/*

1.5/*

yes/*

HB/*

0.81/*

yes/*

750/-

dry/cond.

°C

°C

°C

class

mm

class

mm

°C

Revised: 2025-04-23 Source: Celanese Materials Database

Zytel® ST801 BK010

NYLON RESIN

Glow Wire Flammability Index, 1.5mm	750/-	°C	IEC 60695-2-12
Glow Wire Flammability Index, 3.0mm	750/-	°C	IEC 60695-2-12
Glow Wire Ignition Temperature, 0.75mm	725/-	°C	IEC 60695-2-13
Glow Wire Ignition Temperature, 1.5mm	725/-	°C	IEC 60695-2-13
Glow Wire Ignition Temperature, 3.0mm	725/-	°C	IEC 60695-2-13
FMVSS Class	В		ISO 3795 (FMVSS 302)
Burning rate, Thickness 1 mm	<80	mm/min	ISO 3795 (FMVSS 302)

Electrical properties

Comparative tracking index, 23°C	0/-	PLC	UL 746A
Electric Strength, Short Time, 1mm	31/-	kV/mm	IEC 60243-1

dry/cond.

dry/cond.

Physical/Other properties

Humidity absorption, 2mm	2/*	%	Sim. to ISO 62
Water absorption, 2mm	6.5/*	%	Sim. to ISO 62

Injection

Drying Recommended	yes	
Drying Temperature	80	°C
Drying Time, Dehumidified Dryer	2 - 4	h
Processing Moisture Content	≤0.2	%
Melt Temperature Optimum	290	°C
Min. melt temperature	280	°C
Max. melt temperature	300	°C
Screw tangential speed	≤0.3	m/s
Mold Temperature Optimum	80	°C
Min. mould temperature	50	°C
Max. mould temperature	100	°C
Hold pressure range	50 - 100	MPa
Hold pressure time	4	s/mm
Ejection temperature	190	°C

Extrusion

Drying Temperature	80	$^{\circ}\mathrm{C}$
Drying Time, Dehumidified Dryer	3 - 4	h
Processing Moisture Content	≤0.06	%
Melt Temperature Optimum	280	°C
Melt Temperature Range	275 - 290	°C

Characteristics

Processing Injection Moulding

Special characteristics High impact or impact modified

Printed: 2025-05-29 Page: 2 of 3

Revised: 2025-04-23 Source: Celanese Materials Database

Zytel® ST801 BK010

NYLON RESIN

Automotive

OEM STANDARD ADDITIONAL INFORMATION
BMW GS93016-PA66 (Highly Impact Resistant)

Ford WSK-M4D666-A

Stellantis - Chrysler MS.50017 / CPN-2345 Black

Chemical Media Resistance

Acids

- ✓ Acetic Acid (5% by mass), 23°C
- ✓ Citric Acid solution (10% by mass), 23°C
- ✓ Lactic Acid (10% by mass), 23°C
- ★ Hydrochloric Acid (36% by mass), 23°C
- X Nitric Acid (40% by mass), 23°C
- X Sulfuric Acid (38% by mass), 23°C
- X Sulfuric Acid (5% by mass), 23°C
- X Chromic Acid solution (40% by mass), 23°C

Alcohols

- ✓ Isopropyl alcohol, 23°C
- ✓ Methanol, 23°C
- ✓ Ethanol, 23°C

Standard Fuels

✓ Standard fuel without alcohol (pref. ISO 1817 Liquid C), 23°C

Othe

- ✓ Water, 23°C
- ✓ Water, 90°C

Symbols used:

possibly resistant

Defined as: Supplier has sufficient indication that contact with chemical can be potentially accepted under the intended use conditions and expected service life. Criteria for assessment have to be indicated (e.g. surface aspect, volume change, property change).

x not recommended - see explanation

Defined as: Not recommended for general use. However, short-term exposure under certain restricted conditions could be acceptable (e.g. fast cleaning with thorough rinsing, spills, wiping, vapor exposure).

Printed: 2025-05-29 Page: 3 of 3

Revised: 2025-04-23 Source: Celanese Materials Database

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may processing conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards. We strongly recommend that users

© 2025 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.